High Speed Pressure Clamp

HSPC-2-SB

If you study mechanosensitive channels, then you The HSPC-2-SB is an easy-to-use device for genneed ALA's High Speed Pressure Clamp, HSPC- erating arbitrary pressure waveforms for the study 2-SB. The HSPC-2-SB is the only commercial of mechanosensitive ion channels during patch instrument that can generate reproducible and clamp recording. It is also used to stimulate the rapid pressure/vacuum steps. Adding the HSPC- inner hair cells in the ear canal. The device con-2-SB and the PV-Pump accessory to any patch sists of a control unit and a small headstage. clamp rig creates a complete system for biophysical studies in this important area.

High Speed Pressure Clamp Head Stage VACUUM IN HSPC-2-SB OUTPUT TO PRESSURE PIPETTE IN **HSPC Headstage**

Specifications for HSPC-2-SB		
Max. Input Pressure/Vacuum	+/-7psi; 362mmHg	
Standard Output Pressure/Vacuum Range	+/-200mmHg	
Noise	+/-10mV; +/-1mmHg	
Power	110/220V AC; 0.5A Slow Blow	
Controller	2.9lbs/1.32kg - 8.5"/21.6cm x 7.5"/19cm x 4"/10cm	
Headstage	0.5lbs/0.23kg - 3.75"/9.5cm x 1.75"/4.4cm x 1.75"/4.4cm	
Typical Speed of Response	0 to 100mmHg jump in 12ms: 0 to 100% settling time	
Command Input	20mV/mmHg	
Monitor Output	20mV/mmHg	
Set Point Control (Holding Pressure/Vacuum offset control)	+/-200mmHg	
Moisture Alarm	Capacitance liquid detection sensor to protect valve	

Pressure and vacuum partitioned by small he stage that easily mounts near amplifier prol

- · Simple connection to electrode holder tra mits pressure/vacuum pulses
- Command input of 20mV/mmHg sets press
- Pressure output of 20mV/mmHg signal more or from LCD display

References:

Besch, S.R., et al., (2002). High-speed pressure clamp. Pflügers Ar 445, 161-166.

Suchyna, T., et al., (2004). Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time. F Biol. 1,1–18.

Gomis, A., et al. (2008) Hypoosmotic- and pressure-induced memb stretch activate TRPC5 channels. J Physiol 586.23, 5633-5649.

The PV-Pump System is the ideal pressure/ uum source for the HSPC-2-SB High Speed P sure Clamp. It provides balanced pressure vacuum to the HSPC headstage. The system cludes separate power switches for each p and separate gauges for monitoring the press and vacuum outputs. The supporting platf under the pumps contain two internal chambers

	Order
HSPC-2-SB	Complete pressure clamp system fittings
PV-Pump	Pressure / vacuum pumps with o

HSPC-2-SB System Highlights:

ead-	 Moisture sensor prolongs life of headstage
be	Compatible with all major patch clamp hard-
ans-	ware/software
	Improves consistency of establishing gigaseals
sure	and whole-cell configuration
nitor	 Based on design of Besch et al

rch.	Coste, B., et al., (2012) Piezo proteins are pore-forming subunitsNof me- chanically activated channels. Nature, Vol 483, 176-181.
/e	Sukharev, S. (2010) Piezo proteins are pore-forming subunits of me- chanically actived channels. Nature.
Phys.	Vargo, J.W., et al. (2017). Inhibition of Mitochondrial Division Attenuates Cisplatin-Induced Toxicity in the Neuromast Hair Cells. Frontiers in Cellu- lar Neuroscience, Vol. 11, Article 393.
orane	

PV-Pump System

/vac-	that dampen oscillations from the pumps to the
Pres-	electrode holder. Emergency release valves on
and	the side of the rail are also incorporated into the
m in-	PV-Pump and open when the pressure or vacuum
ump	go beyond the factory set limits. The pumps are
sure	specific for 110/220 VAC operation. The outputs
form	are set to +/- 7psi/362mmHg.
bers	

ring Information

n includes controller, piezo valve headstage and cable, misc. tubing, and

output tubing